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Isometry

The euclidean plane is the set R2 equipped with the inner product
〈X,Y 〉 = X.Y where X.Y denotes the dot product given by
x1y1 + x2y2 where X = (x1, x2) and Y = (y1, y2). This inner
product gives the standard euclidean metric on R2.

Definition 0.1

A function f : R2 → R2 is called an isometry if f preserves the
euclidean distance, that is,

d(f(P ), f(Q)) = d(P,Q), ∀P,Q ∈ R2

We can define the product of two isometries as the composition of
functions (performed from right to left) i.e

fg(P ) = f(g(P ))

It is clear that the product of two isometries is again an isometry.
Also observe that the product is not commutative.
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Examples

The following are typical examples of isometry.

Example 0.2

Translation by a vector (α, β)

t(α,β) : (x, y)→ (x+ α, y + β)

Example 0.3

Rotation about the origin O by an angle θ

rθ : (x, y)→ (x cos θ − y sin θ, x sin θ + y cos θ)

Example 0.4

Reflection in a line L passing through origin and making an
inclination θ with positive X− axis

sθ : (x, y)→ (x cos 2θ + y sin 2θ, x sin 2θ − y cos 2θ)
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Example 0.5

Rotation about an arbitrary point P (a, b) by an angle θ

rP,θ : (x, y)→ t(a,b)rθt
−1
(a,b)

Example 0.6

Reflection in an arbitrary line L and making an inclination θ with
positive X− axis SL,θ(x, y) :→→ t(a,b)sθt

−1
(a,b) where (a, b) is the

foot of the perpendicular from O on L.

Example 0.7 (Glide Reflection)

The product of a reflection with a translation in the direction of
the line of reflection is called a glide reflection with axis L.

Example 0.8 (Half Turn)

Half turn is defined as the rotation by 180o.
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Glide Reflection
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Simple Geometric Observations

A line is the set of points equidistant from given two points

If L is the line of points equidistant from points P and Q,
then reflection in L exchanges P and Q.

The distances from a non-degenerate triangle determines a
unique point

Product of two reflections is a translation or rotation

Every translation or rotation is a product of two reflections

SL1SL2 = SL3SL4 if the point of intersection and
corresponding signed angles(or distance in case of paralle
lines) are equal.

The product of reflections in three parallel lines or in three
concurrent lines is a reflection and a glide reflection otherwise.
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Fixed Points

Definition 0.9

A point P is called fixed point of a function f , if f(P ) = P.
Further, we say that f fixes a set S, if f(S) = S.
A function can have a set S fixed by f without having a fixed
point.

A translation does not fix any point, but fixes a line in the
direction of the vector of translation.

A reflection in a line L fixes all points on the line L. As a set,
it fixes all lines perpendicular to L.

A rotation about a point P fixes exactly one point P.
The half turn, being a roation fixes the point of rotation and
as a set fixes the all lines through P.

A glide reflection has no fixed point.
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Reflections : Building Blocks

Theorem 0.10

1 An isometry that fixes three points is identity

2 An isometry that fixes exactly two points is a reflection in a
line

3 An ismetry that fixes exactly one point is a product of two
reflections

4 An isometry that does not fix any point is a product of three
reflections

Theorem 0.11 (Three Reflections Theorem)

Every isometry in the plane is the product of at most three
reflections
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Orientation

Consider the two orientations (intuitively) in the plane viz.
closckwise and anti-clockwise.

Translations, Rotations or their products (that means product
of two reflections) are orientation preserving isometries
(direct)

Reflections and glide reflections (product of 1 or 3 reflections)
are orientation reversing isometries. (opposite)

The determinant of the rotation matrix

Aθ =

(
cos θ − sin θ
sin θ cos θ

)
is 1 where as that of reflection matrix

Bθ =

(
cos 2θ sin 2θ
sin 2θ − cos θ

)
is -1.
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Table

Isometry Sense Fixed
points

Fixed lines Minimum Number of
reflections

Reflection in
line m

Opposite Points
on line
m

m and all lines per-
pendicular to m

1, in line m

Identity map Direct All All 2, in any one line
Rotation
about O
in angle
θ 6= 180◦

Direct 0(only) None 2, in lines intersecting
at O in angle θ/2

Halfturn
about O

Direct 0(only) All lines through O 2, in lines perpendic-
ular at O

Translation
with vector−−→
PQ

Direct None All lines parallel to
−−→
PQ

2, in lines perpendicu-

lar to
−−→
PQ and half the

length of
−−→
PQ apart

Glide-
reflection
along m and
in m

Opposite None m(only) 3, in m and two lines
perpendicular to m
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Group theoretic properties

The set of isometries of the plane forms a group under
composition denoted by ISO(R2)

The set of translations and rotations (product of two
reflections ) is a normal subgroup of ISO(R2) denoted by
ISO+(R2)

A translation or a glide reflection generate an infinite
subgroup of ISO(R2). Thus a finite subgroup of ISO(R2)
contains only rotations and reflections.

Theorem 0.12 (Leonardo da Vinci)

A finite subgroup of ISO(R2) is either cyclic ( in the case when it
has only rotations) or dihedral (if it contains a reflection).
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Geometric Applications

Theorem 0.13

1 The perpendicular bisectors of the sides of a triangle are
concurrent (Circumcenter)

2 The angle bisectors of the angles of a triangle are concurrent
(Incenter)

3 The medians of a triangle are concurrent (Centroid)

4 The altitudes of a triangle are concurrent (Orthocenter)
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An Application of Isometry to Chemistry

In computational Chemistry, one uses isometry to evaluate
aromaticity or antiaromaticity of polycyclic aromatic allotropes like
Corannulene, Sumanene etc which have polygons (like pentagon or
hexagon) in their molecular structures.
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An Application of Isometry to Chemistry

For evaluation of aromaticity using NICS techniques one needs
to estimate the components of nuclear magnetic shield
tensors.

One technique to estimate the components of nuclear
magnetic shield tensors is to shift and rotate the molecule of
Corannulene or Sumanene to centre of a polygon of such
molecule.
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Further Directions

Isometries in higher dimensions

Isometries in an infinite dimensional Hilber spaces

The action of subgroups of the isometry group on the plane

The Killing-Hopf Theorem-a classification of locally Euclidean
surfaces

Surfaces of constant curvature
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