# Isometries in the Plane 

V. M. Sholapurkar<br>Department of Mathematics

S. P. College, Pune

## Historical Context

- Euclid (4th century BCE)


## Historical Context

- Euclid (4th century BCE)
- Descartes (1596-1650)


## Historical Context

- Euclid (4th century BCE)
- Descartes (1596-1650)
- Riemann (1826-1866)


## Historical Context

- Euclid (4th century BCE)
- Descartes (1596-1650)
- Riemann (1826-1866)
- Kline (1849-1925)


## Isometry

The euclidean plane is the set $\mathbb{R}^{2}$ equipped with the inner product $\langle X, Y\rangle=X . Y$ where $X . Y$ denotes the dot product given by $x_{1} y_{1}+x_{2} y_{2}$ where $X=\left(x_{1}, x_{2}\right)$ and $Y=\left(y_{1}, y_{2}\right)$. This inner product gives the standard euclidean metric on $\mathbb{R}^{2}$.

## Isometry

The euclidean plane is the set $\mathbb{R}^{2}$ equipped with the inner product $\langle X, Y\rangle=X . Y$ where $X . Y$ denotes the dot product given by $x_{1} y_{1}+x_{2} y_{2}$ where $X=\left(x_{1}, x_{2}\right)$ and $Y=\left(y_{1}, y_{2}\right)$. This inner product gives the standard euclidean metric on $\mathbb{R}^{2}$.

## Definition 0.1

A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is called an isometry if $f$ preserves the euclidean distance, that is,

$$
d(f(P), f(Q))=d(P, Q), \forall P, Q \in \mathbb{R}^{2}
$$

## Isometry

The euclidean plane is the set $\mathbb{R}^{2}$ equipped with the inner product $\langle X, Y\rangle=X . Y$ where $X . Y$ denotes the dot product given by $x_{1} y_{1}+x_{2} y_{2}$ where $X=\left(x_{1}, x_{2}\right)$ and $Y=\left(y_{1}, y_{2}\right)$. This inner product gives the standard euclidean metric on $\mathbb{R}^{2}$.

## Definition 0.1

A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is called an isometry if $f$ preserves the euclidean distance, that is,

$$
d(f(P), f(Q))=d(P, Q), \forall P, Q \in \mathbb{R}^{2}
$$

We can define the product of two isometries as the composition of functions (performed from right to left) i.e

$$
f g(P)=f(g(P))
$$

It is clear that the product of two isometries is again an isometry. Also observe that the product is not commutative.

## Examples

The following are typical examples of isometry.

## Example 0.2

Translation by a vector $(\alpha, \beta)$

$$
t_{(\alpha, \beta)}:(x, y) \rightarrow(x+\alpha, y+\beta)
$$

## Examples

The following are typical examples of isometry.

## Example 0.2

Translation by a vector $(\alpha, \beta)$

$$
t_{(\alpha, \beta)}:(x, y) \rightarrow(x+\alpha, y+\beta)
$$

## Example 0.3

Rotation about the origin O by an angle $\theta$

$$
r_{\theta}:(x, y) \rightarrow(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)
$$

## Examples

The following are typical examples of isometry.

## Example 0.2

Translation by a vector $(\alpha, \beta)$

$$
t_{(\alpha, \beta)}:(x, y) \rightarrow(x+\alpha, y+\beta)
$$

## Example 0.3

Rotation about the origin O by an angle $\theta$

$$
r_{\theta}:(x, y) \rightarrow(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)
$$

## Example 0.4

Reflection in a line $L$ passing through origin and making an inclination $\theta$ with positive $X$ - axis

$$
s_{\theta}:(x, y) \rightarrow(x \cos 2 \theta+y \sin 2 \theta, x \sin 2 \theta-y \cos 2 \theta)
$$

## Example 0.5

Rotation about an arbitrary point $P(a, b)$ by an angle $\theta$

$$
r_{P, \theta}:(x, y) \rightarrow t_{(a, b)} r_{\theta} t_{(a, b)}^{-1}
$$

## Example 0.5

Rotation about an arbitrary point $P(a, b)$ by an angle $\theta$

$$
r_{P, \theta}:(x, y) \rightarrow t_{(a, b)} r_{\theta} t_{(a, b)}^{-1}
$$

## Example 0.6

Reflection in an arbitrary line $L$ and making an inclination $\theta$ with positive $X$ - axis $S_{L, \theta}(x, y): \rightarrow \rightarrow t_{(a, b)} s_{\theta} t_{(a, b)}^{-1}$ where $(a, b)$ is the foot of the perpendicular from $O$ on $L$.

## Example 0.5

Rotation about an arbitrary point $P(a, b)$ by an angle $\theta$

$$
r_{P, \theta}:(x, y) \rightarrow t_{(a, b)} r_{\theta} t_{(a, b)}^{-1}
$$

## Example 0.6

Reflection in an arbitrary line $L$ and making an inclination $\theta$ with positive $X$ - axis $S_{L, \theta}(x, y): \rightarrow \rightarrow t_{(a, b)} s_{\theta} t_{(a, b)}^{-1}$ where $(a, b)$ is the foot of the perpendicular from $O$ on $L$.

## Example 0.7 (Glide Reflection)

The product of a reflection with a translation in the direction of the line of reflection is called a glide reflection with axis $L$.

## Example 0.5

Rotation about an arbitrary point $P(a, b)$ by angle $\theta$

$$
r_{P, \theta}:(x, y) \rightarrow t_{(a, b)} r_{\theta} t_{(a, b)}^{-1}
$$

## Example 0.6

Reflection in an arbitrary line $L$ and making an inclination $\theta$ with positive $X$ - axis $S_{L, \theta}(x, y): \rightarrow \rightarrow t_{(a, b)} s_{\theta} t_{(a, b)}^{-1}$ where $(a, b)$ is the foot of the perpendicular from $O$ on $L$.

## Example 0.7 (Glide Reflection)

The product of a reflection with a translation in the direction of the line of reflection is called a glide reflection with axis $L$.

## Example 0.8 (Half Turn)

Half turn is defined as the rotation by $180^{\circ}$.

## Glide Reflection


V. M. Sholapurkar Department of Mathematics

Short Term Course on Symmetry in Sciences and Engg.

## Simple Geometric Observations

- A line is the set of points equidistant from given two points


## Simple Geometric Observations

- A line is the set of points equidistant from given two points
- If $L$ is the line of points equidistant from points $P$ and $Q$, then reflection in $L$ exchanges $P$ and $Q$.


## Simple Geometric Observations

- A line is the set of points equidistant from given two points
- If $L$ is the line of points equidistant from points $P$ and $Q$, then reflection in $L$ exchanges $P$ and $Q$.
- The distances from a non-degenerate triangle determines a unique point
- Product of two reflections is a translation or rotation


## Simple Geometric Observations

- A line is the set of points equidistant from given two points
- If $L$ is the line of points equidistant from points $P$ and $Q$, then reflection in $L$ exchanges $P$ and $Q$.
- The distances from a non-degenerate triangle determines a unique point
- Product of two reflections is a translation or rotation
- Every translation or rotation is a product of two reflections


## Simple Geometric Observations

- A line is the set of points equidistant from given two points
- If $L$ is the line of points equidistant from points $P$ and $Q$, then reflection in $L$ exchanges $P$ and $Q$.
- The distances from a non-degenerate triangle determines a unique point
- Product of two reflections is a translation or rotation
- Every translation or rotation is a product of two reflections
- $S_{L_{1}} S_{L_{2}}=S_{L_{3}} S_{L_{4}}$ if the point of intersection and corresponding signed angles(or distance in case of paralle lines) are equal.
- A line is the set of points equidistant from given two points
- If $L$ is the line of points equidistant from points $P$ and $Q$, then reflection in $L$ exchanges $P$ and $Q$.
- The distances from a non-degenerate triangle determines a unique point
- Product of two reflections is a translation or rotation
- Every translation or rotation is a product of two reflections
- $S_{L_{1}} S_{L_{2}}=S_{L_{3}} S_{L_{4}}$ if the point of intersection and corresponding signed angles(or distance in case of paralle lines) are equal.
- The product of reflections in three parallel lines or in three concurrent lines is a reflection and a glide reflection otherwise.


## Fixed Points

## Definition 0.9

A point $P$ is called fixed point of a function $f$, if $f(P)=P$. Further, we say that $f$ fixes a set $S$, if $f(S)=S$. A function can have a set $S$ fixed by $f$ without having a fixed point.

- A translation does not fix any point, but fixes a line in the direction of the vector of translation.


## Fixed Points

## Definition 0.9

A point $P$ is called fixed point of a function $f$, if $f(P)=P$. Further, we say that $f$ fixes a set $S$, if $f(S)=S$.
A function can have a set $S$ fixed by $f$ without having a fixed point.

- A translation does not fix any point, but fixes a line in the direction of the vector of translation.
- A reflection in a line $L$ fixes all points on the line $L$. As a set, it fixes all lines perpendicular to $L$.


## Fixed Points

## Definition 0.9

A point $P$ is called fixed point of a function $f$, if $f(P)=P$. Further, we say that $f$ fixes a set $S$, if $f(S)=S$.
A function can have a set $S$ fixed by $f$ without having a fixed point.

- A translation does not fix any point, but fixes a line in the direction of the vector of translation.
- A reflection in a line $L$ fixes all points on the line $L$. As a set, it fixes all lines perpendicular to $L$.
- A rotation about a point $P$ fixes exactly one point $P$. The half turn, being a roation fixes the point of rotation and as a set fixes the all lines through $P$.


## Definition 0.9

A point $P$ is called fixed point of a function $f$, if $f(P)=P$. Further, we say that $f$ fixes a set $S$, if $f(S)=S$.
A function can have a set $S$ fixed by $f$ without having a fixed point.

- A translation does not fix any point, but fixes a line in the direction of the vector of translation.
- A reflection in a line $L$ fixes all points on the line $L$. As a set, it fixes all lines perpendicular to $L$.
- A rotation about a point $P$ fixes exactly one point $P$. The half turn, being a roation fixes the point of rotation and as a set fixes the all lines through $P$.
- A glide reflection has no fixed point.


## Reflections : Building Blocks

## Theorem 0.10

(1) An isometry that fixes three points is identity

## Reflections : Building Blocks

## Theorem 0.10

(1) An isometry that fixes three points is identity
(2) An isometry that fixes exactly two points is a reflection in a line

## Reflections : Building Blocks

## Theorem 0.10

(1) An isometry that fixes three points is identity
(2) An isometry that fixes exactly two points is a reflection in a line
(3) An ismetry that fixes exactly one point is a product of two reflections

## Reflections : Building Blocks

## Theorem 0.10

(1) An isometry that fixes three points is identity
(2) An isometry that fixes exactly two points is a reflection in a line
(3) An ismetry that fixes exactly one point is a product of two reflections
(4) An isometry that does not fix any point is a product of three reflections

## Theorem 0.11 (Three Reflections Theorem)

Every isometry in the plane is the product of at most three reflections

## Orientation

- Consider the two orientations (intuitively) in the plane viz. closckwise and anti-clockwise.


## Orientation

- Consider the two orientations (intuitively) in the plane viz. closckwise and anti-clockwise.
- Translations, Rotations or their products (that means product of two reflections) are orientation preserving isometries (direct)


## Orientation

- Consider the two orientations (intuitively) in the plane viz. closckwise and anti-clockwise.
- Translations, Rotations or their products (that means product of two reflections) are orientation preserving isometries (direct)
- Reflections and glide reflections (product of 1 or 3 reflections) are orientation reversing isometries. (opposite)


## Orientation

- Consider the two orientations (intuitively) in the plane viz. closckwise and anti-clockwise.
- Translations, Rotations or their products (that means product of two reflections) are orientation preserving isometries (direct)
- Reflections and glide reflections (product of 1 or 3 reflections) are orientation reversing isometries. (opposite)
- The determinant of the rotation matrix

$$
\begin{aligned}
A_{\theta} & =\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \text { is } 1 \text { where as that of reflection matrix } \\
B_{\theta} & =\left(\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos \theta
\end{array}\right) \text { is }-1
\end{aligned}
$$

| Isometry | Sense | Fixed points | Fixed lines | Minimum Number of reflections |
| :---: | :---: | :---: | :---: | :---: |
| Reflection in line $m$ | Opposite | Points on line $m$ | $m$ and all lines perpendicular to $m$ | 1 , in line $m$ |
| Identity map | Direct | All | All | 2, in any one line |
| Rotation about $O$ in angle $\theta \neq 180^{\circ}$ | Direct | 0 (only) | None | 2 , in lines intersecting at $O$ in angle $\theta / 2$ |
| Halfturn about $O$ | Direct | 0 (only) | All lines through $O$ | 2, in lines perpendicular at $O$ |
| Translation with vector $\overrightarrow{P Q}$ | Direct | None | $\xrightarrow[\overrightarrow{P Q}]{\mathrm{All}}$ lines parallel to | 2, in lines perpendicular to $\overrightarrow{P Q}$ and half the length of $\overrightarrow{P Q}$ apart |
| Glidereflection along $m$ and in $m$ | Opposite | None | $m$ (only) | 3 , in $m$ and two lines perpendicular to $m$ |

## Group theoretic properties

- The set of isometries of the plane forms a group under composition denoted by $I S O\left(\mathbb{R}^{2}\right)$
- The set of translations and rotations (product of two reflections ) is a normal subgroup of $\operatorname{ISO}\left(\mathbb{R}^{2}\right)$ denoted by $I S O^{+}\left(\mathbb{R}^{2}\right)$
- A translation or a glide reflection generate an infinite subgroup of $I S O\left(\mathbb{R}^{2}\right)$. Thus a finite subgroup of $\operatorname{ISO}\left(\mathbb{R}^{2}\right)$ contains only rotations and reflections.


## Group theoretic properties

- The set of isometries of the plane forms a group under composition denoted by $I S O\left(\mathbb{R}^{2}\right)$
- The set of translations and rotations (product of two reflections ) is a normal subgroup of $\operatorname{ISO}\left(\mathbb{R}^{2}\right)$ denoted by $I S O^{+}\left(\mathbb{R}^{2}\right)$
- A translation or a glide reflection generate an infinite subgroup of $\operatorname{ISO}\left(\mathbb{R}^{2}\right)$. Thus a finite subgroup of $\operatorname{ISO}\left(\mathbb{R}^{2}\right)$ contains only rotations and reflections.


## Theorem 0.12 (Leonardo da Vinci)

A finite subgroup of $I S O\left(\mathbb{R}^{2}\right)$ is either cyclic (in the case when it has only rotations) or dihedral (if it contains a reflection).

## Geometric Applications

## Theorem 0.13

(1) The perpendicular bisectors of the sides of a triangle are concurrent (Circumcenter)
(2) The angle bisectors of the angles of a triangle are concurrent (Incenter)
(3) The medians of a triangle are concurrent (Centroid)
(9) The altitudes of a triangle are concurrent (Orthocenter)

## An Application of Isometry to Chemistry

In computational Chemistry, one uses isometry to evaluate aromaticity or antiaromaticity of polycyclic aromatic allotropes like Corannulene, Sumanene etc which have polygons (like pentagon or hexagon) in their molecular structures.


Corannulene


Sumanene

## An Application of Isometry to Chemistry

- For evaluation of aromaticity using NICS techniques one needs to estimate the components of nuclear magnetic shield tensors.


## An Application of Isometry to Chemistry

- For evaluation of aromaticity using NICS techniques one needs to estimate the components of nuclear magnetic shield tensors.
- One technique to estimate the components of nuclear magnetic shield tensors is to shift and rotate the molecule of Corannulene or Sumanene to centre of a polygon of such molecule.


Corannulene molecule after rotation and translation

## Further Directions

- Isometries in higher dimensions
- Isometries in higher dimensions
- Isometries in an infinite dimensional Hilber spaces
- Isometries in higher dimensions
- Isometries in an infinite dimensional Hilber spaces
- The action of subgroups of the isometry group on the plane
- Isometries in higher dimensions
- Isometries in an infinite dimensional Hilber spaces
- The action of subgroups of the isometry group on the plane
- The Killing-Hopf Theorem-a classification of locally Euclidean surfaces
- Isometries in higher dimensions
- Isometries in an infinite dimensional Hilber spaces
- The action of subgroups of the isometry group on the plane
- The Killing-Hopf Theorem-a classification of locally Euclidean surfaces
- Surfaces of constant curvature


## References I

[1] C. W. Dodge, Euclidean Geometry and Transformations, Dover, 1972
[2] G. E. Martin, Transformation Geometry, Springer, 1982
[3] . Stillwell, Geometry of Surface, Springer-Verlag, 1992
[4] . M. Yaglom, Geometric Transformations I, Random House, 1962

## THANK YOU

